
WHITE PAPER

mbLog Logging and Diagnosis Tool

This white paper gives an introduction to the logging and diagnosis tool of the
embenatics tool suite, called mbLog. It shows views of a typical logging session
with a high level description of the tool’s features and usage.

mbLog an Introduction
The logging and diagnosis tool of the embenatics tool suite is called mbLog. It is an Eclipse™
platform-based tool, which can be used as a plug-in for an existing Eclipse™ workbench or as a
stand-alone application. The Eclipse™ platform is Java™-based and therefore runs on multiple
different PC operating systems like Windows™, Linux™ and MacOS™.

mbLog connects with the target system via different types of interfaces, like USB or a socket port.
All logging events sent by the target system will be captured and logged by the tool. Different views
supported by the tool allow online and offline investigation of the target behavior. Events captured
by the tool can be stored, distributed and reloaded for further analysis. mbLog, therefore, acts as a
lightweight tool for different purposes during the development cycle; these include diagnosis and
inspection tasks of the running system even via a remote connection.

mbLog is not a hardware debugger or emulator for in-deep system debugging purposes. Instead, it
relies on instrumenting the code by using a dedicated logging API and inter-process communication
traces that are logged automatically by the embenatics foundation layer software. mbLog is the
visualization tool of the embenatics tool chain to display target system traces, statistics and
historical data of the underlying foundation layer.

www.embenatics.com
© 2011

http://www.embenatics.com/

WHITE PAPERmbLog Logging and Diagnosis Tool

Connecting with the Target
Due to the fact that the connection type of the logging interface varies among different target

hardware platforms, mbLog provides a connection manager which handles the specifics of the
physical connection.

An initial connection with the target system is usually done by using the connection wizard of
mbLog. A connection is classified by a set of parameters that describe the connection details.
These depend on the physical type of the connection and may vary. Beside the physical
connection parameters, the user should provide a name of the connection, and optionally, a set
of trace description files for increased usability of the tool. Trace description files are generated
by the generator mbGen. For further information on mbGen and the embenatics design
methodology please see another document in this white paper series [embenatics Design
Methodology].

Below is an example for a socket connection created using the connection wizard.

Figure 1 Connection Wizard

Once a connection has been created, all parameters are stored by mbLog and will be available for a
restart of that connection during the next session.

Since a complex system can consist of more than one CPU core, mbLog’s connection manager
supports that fact and can handle several connections in parallel. All currently established

Revision 1.2.0 Page 2 of 12

http://embenatics.com/files/white_paper_embenatics_design_methodology.pdf
http://embenatics.com/files/white_paper_embenatics_design_methodology.pdf

WHITE PAPERmbLog Logging and Diagnosis Tool

connections of a session are displayed in the Connection Status View. The different status of the
connections can be supervised and modified by a couple of controls assigned to each connection
status display. Below is a screenshot showing three active connections and their corresponding
status. From top to bottom:

 A serial connection using COM port 1 interface. The logger is connected and the connection
has been paused by the user

 A log file connection reading the contents of the logfile myLogfile.mbLog. The logger is
connected and the connection is active.

 A socket connection with port 20000 of IP 164.250.4.0. The logger is currently disconnected
and therefore the connection is inactive.

Figure 2 Connection Status View

The Connection Status View provides controls to create a new connection, remove an existing
connection set-up and restore a previous connection when starting a new session. Each connection
status display provides a context menu that allows the user to change the connection status, set and
modify color mappings and trace filters, store the log file or start an associated view for the
connection. See Figure 2 for more details.

Revision 1.2.0 Page 3 of 12

WHITE PAPERmbLog Logging and Diagnosis Tool

Inspecting the Trace View
Once a connection with the target is established and the system is up and running, diagnostic and
trace information will be logged by the tool. All of this data can be inspected by opening one or
several Trace Views for that particular connection. A Trace View can be opened via the context
menu of the connection display in the Connection Status View, see Figure 2.
A Trace View shows trace data in a tabular fashion with different columns dedicated to particular
parts of the trace information, like the timestamp, the sender and additional detailed information
depending on the type of the trace.
Below is an example screenshot for a Trace Viewer

Figure 3 Trace View

Revision 1.2.0 Page 4 of 12

WHITE PAPERmbLog Logging and Diagnosis Tool

A Trace View window usually displays incoming traces for the respective connection immediately
when they are logged by the tool. For a better inspection of the traces while the system is running,
each Trace View display can be paused and scrolled to the desired position. The trace history
displayed by the Trace Viewer can be purged at any time during the session to remove older or
unnecessary traces from the view.

Currently two types of traces are supported. One of them is a text-based trace, that transports
user-defined strings, which has been added to the application code by the programmer,
utilizing the logging API of the embenatics foundation layer software. The other is a binary
trace, which holds the data content of inter-process service calls or data type elements.
Inter-process communication traces are generated automatically by the foundation layer
software if enabled by the user. In addition, all other data type elements, that have been
defined in interface description documents, can be logged via the logging API whenever
needed and applicable for the running system. More details about how traces are generated
by the target system and how the programmer is able to instrument the code with
customized traces can be found in another publication of this series of white papers [mbLay
Logging].

Revision 1.2.0 Page 5 of 12

http://embenatics.com/files/white_paper_mblay_logging.pdf
http://embenatics.com/files/white_paper_mblay_logging.pdf

WHITE PAPERmbLog Logging and Diagnosis Tool

Color Mapping
For a better overview and separation of traces it is possible to map individual color settings to
particular trace attributes. This could simply involve all traces from a specific sender, or, at a level of
greater complexity, manage all calls of a specific RPC service that are performed between a
dedicated sender and receiver. Color mappings are stored together with the connection settings; for
this reason, every time a connection is restored in mbLog, the corresponding color mappings will be
applied. To define color mappings for a particular connection, the color mapping dialog can be
opened via the context menu of the connection display in the Connection Status View, see Figure 2.
The dialog itself is shown below.

Revision 1.2.0 Page 6 of 12

WHITE PAPERmbLog Logging and Diagnosis Tool

Figure 4 Color Mapping Dialog

Figure 4 illustrates a fairly complex setting for a color mapping as an example. In this display, a
yellow color should be assigned to traces which are a combination of the following attributes:

 A binary RPC service trace

 The sender or better caller of the service is the thread with the name UI

 The receiver or callee for the service is the thread with the name STORAGE

 The particular RPC service that is called is STORAGE_INFO_get_cover()

For the selection of the particular RPC service another dialog window is available, which lists all
services that are provided by the trace description files. These have been assigned to the connection
during its set-up, as already mentioned above. The color matching rules for a connection will be
processed from top to bottom. The first match will assign the corresponding color for that trace.
Therefore, the order of the rules is important and can be sorted via drag and drop of the table
elements on the left of the color mapping dialog.
The Trace View in the back of Figure 4 shows the outcome of the mapping and the yellowish RPC
traces for STORAGE_INFO_get_cover().
Color mapping is a simple but powerful feature of mbLog to detect certain patterns in target
loggings that could easily be judged as normal or abnormal behaviour of the system under
observation.

Trace Filter
Besides the above-mentioned color mappings, trace filters are another way to organize the traces
that have been logged by the tool. Each Trace View has an individual set of active filters that decide
which traces are allowed to pass and to be displayed by the viewer. These filters only affect the
traces that have already been logged by mbLog. A trace filter, therefore, creates a subset of all
available traces logged by the tool and can be changed by the user whenever needed.
Once a filter has been created, it is available for all Trace Viewers of a connection. Trace filters can
be enabled or disabled per viewer which allows the user is able to create different filter combinations
for organizing separate perspectives of the trace data in several Trace Views.

To define filter settings for a particular connection, the trace filter dialog can be opened via the
context menu found in the connection display as part of the Connection Status View (see Figure 2),
or by clicking the filter icon in the toolbar of the Trace Viewer.

The dialog itself is shown below.

Revision 1.2.0 Page 7 of 12

WHITE PAPERmbLog Logging and Diagnosis Tool

Figure 5 Trace Filter Dialog

Figure 5 shows a more specific filter setting as an example. In this case, only binary traces for a
specific data type element are filtered and displayed by the view. The filter is built by a combination
of the following attributes:

 A binary data trace

 The sender of the trace could be unspecified

 The particular data type element to be filtered is DISPLAY_CONTROL_FIELD_CONTENT_type

Revision 1.2.0 Page 8 of 12

WHITE PAPERmbLog Logging and Diagnosis Tool

For the selection of a particular data type element, another dialog window is available, which lists all
data type elements that are provided by the trace description files. These have been assigned to the
connection at the time it was set up, as already mentioned above.
The Trace View in the back of Figure 5 shows the outcome of the applied filter and a set of traces for
DISPLAY_CONTROL_FIELD_CONTENT_type. Filters can be activated and deactivated by using the
checkbox in front of the filter name. Active filters for a Trace View are indicated by an orange
background color of the trace filter icon in the toolbar of the respective view.

Filters are a powerful feature to focus on a particular trace or group of traces that need to be
selected from the data stream for a more detailed inspection. Filters can be switched on and off in a
flexible way on a case-by-case basis and are stored together with the connection settings.

Decoding Binary Traces
Binary traces are one type of trace that will be logged by mbLog. There are two kinds of binary
traces. One is the RPC service call, that consists of the binary data that has been exchanged when
performing the call, namely the service parameters and the return value. The other one is the data
type element and all binary data it consists of. Data type elements comprise structures, unions and
their sub elements that have been defined by the corresponding interface description documents
(MBID). More details about interface description documents can be found in another publication of
this series of white papers [embenatics Interface Description].

The Trace Viewer is dedicated to display the basic trace information, namely the timestamp and
sender; and, in case of a service call the receiver and the name of the service or type. In order to
decode and visualize the payload data of a binary trace, another viewer is available, the Decoder
View.
One or more Decoder Views can be started in a similar fashion as already described for Trace Views,
by using the context menu of the respective connection display. See figure 2 for more details.
A Decoder View is bound to the corresponding connection and only binary traces for that connection
can be processed. To decode a binary trace, one simply drags and drops the trace in the Decoder
View window area. The binary trace is marked by a headline similar to the one shown by the Trace
Viewer and below that is the decoded data represented by a tree structure. Figure 6 illustrates an
example Decoder View with two decoded traces that were introduced in the previous chapter while
explaining the details of the Trace View. It shows an RPC service called STORAGE_INFO_get_cover()
and an element data type trace named DISPLAY_CONTROL_FIELD_CONTENT_type.

Revision 1.2.0 Page 9 of 12

http://embenatics.com/files/white_paper_embenatics_interface_description.pdf

WHITE PAPERmbLog Logging and Diagnosis Tool

Figure 6 Decoder View

To customize and further inspect the decoded trace, a context menu is provided that allows to
expand and collapse parts of the trace as well as to remove traces that are no longer needed.
A Decoder View is a powerful feature to verify data content that has been exchanged via inter-
process communication or has been explicitly traced by instrumenting the code at specific locations
for diagnostic purposes. All data type elements, as well as the service parameters, are displayed as

Revision 1.2.0 Page 10 of 12

WHITE PAPERmbLog Logging and Diagnosis Tool

they have been defined in the interface description documents (MBID), including the comments and
corresponding mappings if applied. The more information the user has put into the task of interface
definition, the more benefits he/she has when interpreting the data using the Decoder View.

The Workbench
All of the mbLog views mentioned above are organized by a workbench. In addition to a
preconfigured perspective, the user can freely rearrange the position of the views as preferred.
Windows and areas can be resized and moved to achieve the optimal layout for inspecting the
system internals that have been logged by the tool.
Below is a sample screenshot showing the different views in action.

Figure 7 mbLog Workbench

Revision 1.2.0 Page 11 of 12

WHITE PAPERmbLog Logging and Diagnosis Tool

Conclusion
mbLog is the logging and diagnostic tool of the embenatics tool chain. It is very useful when
inspecting the activities and events of the running system based on the embenatics foundations
layer mbLay. Inter-process communication services, data types and definitions declared in interface
description documents during the design phase can be displayed and visualized for diagnostic and
test purposes when bringing the embedded system to life. All events coming from the target system
are logged and can be stored for an on-the-fly inspection or post analysis activities.

About Us
embenatics is a new company that entered the market in 2010. Our focus is on embedded software
development; as such we offer a software foundation layer and tool suite that supports your
development team in designing embedded software in an efficient, portable and maintainable way.
Based on our wide and varied experience in embedded systems design and development, we know
that future product requirements are hard to predict. Our goal is, therefore, to provide you with our
technology to make the design of your products as flexible and adaptable as possible. Our approach
allows your company to concentrate on the core competencies that differentiate your valuable
product from those of your competitors.

Before embenatics was founded, we worked with well-known international companies over two
decades and gained valuable experience in the embedded software business. While working as
software developers and architects, we encountered the various challenges of the embedded
software development life cycle. This wide range of experiences is the backbone of the software
foundation products that are offered by embenatics.

Our business philosophy is to establish a close and trustful relationship with our customers in order
to successfully promote and support projects over a long time period. For further information please
contact

Joachim Pilz
Beerenstraße 29

14163 Berlin

info@embenatics.com
www.embenatics.com

Phone +49 30 26 34 75 28
Mobile +49 176 96 98 46 07

Revision 1.2.0 Page 12 of 12

http://www.embenatics.com/

